Math, asked by shivanisingh68, 7 months ago

if x+1/x=2then find x4 +1x4.
mind power Question❓​

Answers

Answered by Anonymous
14

\large\star\boxed{\bf{\green{\underline{\underline{GIVEN:-}}}}}

x +  \frac{1}{x}  = 2

\large\star\boxed{\sf{\green{To \:Find:-}}}

 {x}^{4}  +  \frac{1}{ {x}^{4} }

\large\star\boxed{\bf{\green{SOLUTION:-}}}

FIRST WE HAVE TO FIND

 {x}^{2}  +  \frac{1}{ {x}^{2} }

BECAUSE IT IS GIVEN THAT

x +  \frac{1}{x}  = 2

SO,

 =  > ( {x +  \frac{1}{x} })^{2}  =  {x}^{2} +  \frac{1}{{x}^{2} }   + 2.x. \frac{1}{x}

as \: x \: and \:  \frac{1}{x}  \: gets \: cancelled \: we \: get

  =  > {2 }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} } + 2

 =  > 4 - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }

so \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 2

now \: as \: we \: have \: got \:  {x}^{2} +  \frac{1}{ {x}^{2} } = 2 \: we \: have \: to \: find \:  {x}^{4}  +  \frac{1}{ {x}^{4} }

( {x}^{2}  +  \frac{1}{ {x}^{2} } )^{2}  = 2

 =  > ( {x}^{2}  +  \frac{1}{ {x}^{2} } ) ^{2}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2. {x}^{2}. \frac{1}{ {x}^{2} }

as \:  {x}^{2}  \: and \:  \frac{1}{ {x}^{2} } \: gets \: cancelled \: we \: get \:

 =  > ( {x}^{2}  +  \frac{1}{ {x}^{2} } ) ^{2}   =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2

 =  >  {2}^{2}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2

 =  > 4  - 2=  {x}^{4}  +  \frac{1}{ {x}^{4} }

so \:  {x}^{4}  +  \frac{1}{ {x }^{4} }  = 2

THEREFORE THE RIGHT ANS IS 2.

actual \: answer \: of \:  {x}^{4}  +  \frac{1}{ {x}^{4} } \: is \: 2

Similar questions