if x - 1/x =3+2√2 , find the value of 1/4(x³-1/x³)
Answers
Answered by
5
EXPLANATION.
⇒ (x - 1/x) = 3 + 2√2.
Cubing on both sides of the equation, we get.
⇒ (x - 1/x)³ = (3 + 2√2)³.
As we know that,
Formula of :
⇒ (x - y)³ = x³ - 3x²y + 3xy² - y³.
⇒ (x + y)³ = x³ + 3x²y + 3xy² + y³.
Using this formula in the equation, we get.
⇒ (x³) - 3(x²)(1/x) + 3(x)(1/x)² - (1/x)³ = [(3)³ + 3(3)²(2√2) + 3(3)(2√2)² + (2√2)³].
⇒ (x³) - 3x + 3/x - 1/x³ = [27 + 27(2√2) + 9(8) + 16√2)].
⇒ (x³) - 3(x - 1/x) - 1/x³ = [27 + 54√2 + 72 + 16√2].
Put the value of x - 1/x = 3 + 2√2 in the equation, we get.
⇒ x³ - 3(3 + 2√2) - 1/x³ = [99 + 70√2].
⇒ x³ - 9 - 6√2 - 1/x³ = [99 + 70√2].
⇒ x³ - 1/x³ = [99 + 70√2] + 9 + 6√2.
⇒ x³ - 1/x³ = 99 + 6 + 70√2 + 6√2.
⇒ x³ - 1/x³ = 105 + 76√2.
To find :
⇒ 1/4 (x³ - 1/x³).
⇒ 1/4 x (105 + 76√2).
⇒ 1/4 (x³ - 1/x³) = (105 + 76√2)/4.
Similar questions