Math, asked by dishitapa2829, 1 year ago

If x-1/x =3+2√2,find the value of x^3 -1/x^3

Answers

Answered by anu24239
2

ANSWER

x -  \frac{1}{x}  = 3 + 2 \sqrt{2}  \\  \\ take \: cube \: on \: both \: side \\  \\  {(x -  \frac{1}{x}) }^{3}  =  {(3 - 2 \sqrt{2} )}^{3}  \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3(x)( \frac{1}{x} )(x -  \frac{1}{x} ) =  ({3 - 2 \sqrt{2}) }^{3}  \\  \\  {x}^{3}  -  \frac{1}{ x^{3} }  - 3(3 - 2 \sqrt{2} ) =  {(3 - 2 \sqrt{2}) }^{3}  \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  = 3(3 - 2 \sqrt{2} ) + ( {3 - 2 \sqrt{2}) }^{3}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = (3 - 2 \sqrt{2} )(3 +  {(3 - 2 \sqrt{2} )}^{2} ) \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  = (3 - 2 \sqrt{2} )(3 + 9 + 8 - 12 \sqrt{2} ) \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  = (3 - 2 \sqrt{2} )(20 - 12 \sqrt{2} ) \\  \\  {x}^{3}  -  \frac{1}</strong><strong>{</strong><strong>x^</strong><strong>3</strong><strong>}  = 60 - 36 \sqrt{2}  - 40 \sqrt{2}  + 48 \\  \\  {x}^{3}  -  \frac{1}{ {x}^{3} }  = 108 - 76 \sqrt{2}

#BTSKINGDOM

Similar questions