Math, asked by nirmalabisht244, 5 days ago

if x - 1/x=3+2√2,find x³-1/x³​

Attachments:

Answers

Answered by AestheticHour
1

{ \boxed {\huge {\frak{ \red{answer}}}}}

Given :

  • x-1/x = 3+2√2

To find :

  • x³-1/x³

Solution :

  \sf{{x}^{3} -  \frac{1}{ {x}^{3} } } = ( {x -  \frac{1}{x}) }^{3}  \\  \\ \sf{using \:  {(a + b)}^{3} =  {a}^{3}  -  {b}^{3}   -  3ab(a + b) } \\  \\  \sf{{(x -  \frac{1}{x}) }^{3} =  {x}^{3}  -   {(\frac{1}{x}})^{3}  - 3(x)( \frac{1}{x} ) } \\  \\  \sf{ = (x -   {\frac{1}{x})}^{3} - 3( \cancel{x})( \frac{1}{ \cancel{x}} )} \\  \\  \sf{ =  {(3 + 2\sqrt{2})}^{3} - 3} \\  \\  \sf{using \:  {( a+ b)}^{3} =  {a}^{3} +  {b}^{3} + 3ab(a + b)  } \\  \\  \sf{ = [{3}^{3} +  {(2  \sqrt{2})}^{3} + 3(3){(2  \sqrt{2})(3 + 2 \sqrt{2} }]  - 3 } \\  \\  \sf{ = [ 27 + 16 \sqrt{2} + 18 \sqrt{2}(3 + 2 \sqrt{2}] - 3  } \\  \\

Similar questions