Math, asked by krazytube100, 2 months ago

if x-1/x = 3 +2 √2 then find x³ -. 1/x³​

Answers

Answered by sidsoh1996
1

Answer:

hejdjv89497829

iejdhh

brjfk

hfjdkm

dudhnnfn

xhhdj

dhbd

dhdhn

dhjdkfk

dhjdjd sorry I don't now solutions

Answered by mathdude500
1

Given :-

\rm :\longmapsto\:x - \dfrac{1}{x} = 3 + 2 \sqrt{2}

To Find :-

\rm :\longmapsto\: {x}^{3}  - \dfrac{1}{ {x}^{3} }

Solution :-

Given that,

\rm :\longmapsto\:x - \dfrac{1}{x} = 3 + 2 \sqrt{2}

We know that,

 \pink{\rm :\longmapsto\: \bf \:  {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y)}

 \pink{\bf\implies \: {x}^{3} -  {y}^{3} =  {(x  -  y)}^{3} + 3xy(x  -  y)}

Now,

Consider,

\red{\bf :\longmapsto\: {x}^{3}  - \dfrac{1}{ {x}^{3} }}

 \:  \:   \rm \:  =  \:   \: {\bigg(x - \dfrac{1}{x} \bigg) }^{3} + 3 \times x \times \dfrac{1}{x} \times \bigg(x - \dfrac{1}{x} \bigg)

 \:  \:   \rm \:  =  \:   \: {(3 + 2 \sqrt{2} )}^{3} + 3(3 + 2 \sqrt{2})

 \:  \:   \rm \:  =  \:   \:(3 + 2 \sqrt{2})\bigg( {(3 + 2 \sqrt{2} )}^{2}  + 3\bigg)

 \:  \:   \rm \:  =  \:   \:(3 + 2 \sqrt{2})(9 + 8 + 12 \sqrt{2} + 3)

 \:  \:   \rm \:  =  \:   \:(3 + 2 \sqrt{2})(20+ 12 \sqrt{2})

 \:  \:   \rm \:  =  \:   \:60 + 36 \sqrt{2} + 40 \sqrt{2} + 48

 \:  \:   \rm \:  =  \:   \:108 + 76 \sqrt{2}

Hence,

 \:  \:  \:  \:  \:  \:  \: \red{\bf :\implies\: {x}^{3}  - \dfrac{1}{ {x}^{3} } = 108 + 76 \sqrt{2} }

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions