Math, asked by prajapatipiya75, 2 months ago

if x-1/x=3/2 find the value of a) x+1/x

Answers

Answered by yadavumesh0017
1

Answer:

squaring both side

x^2+1/x^2-2=9/4

x^2+1/x^2=17/4

add 2 both side

x^2+1/x^2+2=25/4

(x+1/x)^2=25/4

x+1/x=5/4

Answered by xSoyaibImtiazAhmedx
4

Answer:

Given,

 \large \color{red}{ \bold{★ \:  \:  \:  \: x  -  \frac{1}{x}  =  \frac{3}{2} }}

To find :—

 \color{violet} \bold{→x +  \frac{1}{x}  =  ?}

Now,

 \color{blue}\bold{(x +  \frac{1}{x} ) ^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2.x. \frac{1}{x} }

 \color{blue} \bold{ \implies {(x +  \frac{1}{x}) }^{2} =   {x}^{2}  +  \frac{1}{ {x}^{2} }   -  2.x. \frac{1}{x} + 4.x. \frac{1}{x} }

 \color{blue} \bold{ \implies {(x +  \frac{1}{x}) }^{2} =    {(x -  \frac{1}{x} )}^{2}  + 4.x. \frac{1}{x} }

\color{blue} \bold{ \implies {(x +  \frac{1}{x}) }^{2} =    {(x -  \frac{1}{x} )}^{2}  + 4 }

\color{blue} \bold{ \implies {(x +  \frac{1}{x}) }^{2} =    {( \frac{3}{2} )}^{2}  + 4 }

\color{blue} \bold{ \implies {(x +  \frac{1}{x}) }^{2} =    \frac{9}{4}  + 4 }

\color{blue} \bold{ \implies {(x +  \frac{1}{x}) }^{2} =    \frac{9 + 16}{4} }

\color{blue} \bold{ \implies {(x +  \frac{1}{x}) }^{2} =    \frac{25}{4} }

\color{blue} \bold{ \implies  \sqrt{{(x +  \frac{1}{x}) }^{2}} =     \sqrt{\frac{25}{4} }}

 \large{\color{orange} \bold{ \implies  \boxed {\bold{x +  \frac{1}{x} =    \frac{5}{2} }}}}

Formula required :—

 \boxed{ \bold{† \:  {(x + y)}^{2}  =  {(x - y)}^{2}  + 4xy}}

Similar questions