if x-1/x =3√2 find the value of x square + 1/xsquare
Answers
Answered by
0
Question:
If x - 1/x = 3√2 , then find the value of
x^2 + 1/x^2.
Note:
- (a + b)^2 = a^2 + b^2 + 2•a•b
- (a - b)^2 = a^2 + b^2 - 2•a•b
- a^2 - b^2 = (a + b)(a - b)
Solution;
We have;
x - 1/x = 3√2 -----------(1)
Also,
We know that;
(a - b)^2 = a^2 + b^2 - 2•a•b
Thus;
=> (x - 1/x)^2 = x^2 + 1/x^2 - 2•x•(1/x)
=> (3√2)^2 = x^2 + 1/x^2 - 2
=> 18 = x^2 + 1/x^2 - 2 {using eq-(1)}
=> x^2 + 1/x^2 = 18 + 2
=> x^2 + 1/x^2 = 20
Hence,
The required value of x^2 + 1/x^2 = 20.
Similar questions