Math, asked by vickysangma, 1 year ago

if, x+1/x=3,find the value of x^2+1/x^2

Answers

Answered by abhi569
6

x +  \frac{1}{x}  = 3 \\  \\  \\  \\   \boxed{\bold{ \underline{square \: on \: both \: sides}}} \\  \\  \\  \\  {(x +  \frac{1}{x}) }^{2}  =  {3}^{2}  \:  \:  \: \\  \\  \\  {x}^{2}  +   \frac{1}{ {x}^{2} }  + 2(x \times  \frac{1}{x} ) = 9 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   | \bold{ \:  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab} \\  \\  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 9 \\  \\  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 9 - 2 \\  \\  \\  \\   {x}^{2}  +  \frac{1}{ {x}^{2} }  = 7

B83fbd: nice
abhi569: (-;
Answered by HappiestWriter012
1
Hey there!

Given,  \boxed{x + \frac{1}{x} = 3 }

Now We have to find value of x² + 1/x²

=> x² + 1/x²

=> ( x + 1/x)² - 2x(1/x)

We know that, x + 1/x = 3 , x × 1/x = 1

=> 3² - 2

=> 9 -2

=> 7 .

Also,

( x + 1/x) = 3

Square on both sides,

( x + 1/x)² = 3²

x² + 1/x² + 2 = 9

x² + 1/x² = 9 - 2 = 7

Therefore,  \boxed{ x^2  + \frac{1}{x^2} = 7}
Similar questions