Math, asked by Kashish20Choudhary, 9 months ago

If x-1/x=3 ,find the value of x^3+1/x^3

Answers

Answered by Anonymous
2

Answer:

hey

x - 1 / x = 3

On cubing both sides ;

( x - 1 / x ) = ( 3 )³

Using Identity :

( a - b )³ = a³ - b³ - 3 ab ( a - b )

⇒ x³ - 1 / x³ - 3 ( x - 1 / x ) = 27

⇒ x³ - 1 / x³ - 3 ( 3 ) = 27

⇒ x³ - 1 / x³ - 9 = 27

⇒ x³ - 1 / x³ = 27 + 9

⇒ x³ - 1 / x³ = 36

Hence, the answer is 36.

Answered by KingSrikar
4

\sf{\displaystyle x-\frac{1}{x}=3}

❥ Take Cube Root on Both Sides of the Equation

  • Cube root means Taking Whole Power 3 to Both Sides

\to\sf{\displaystyle \left(x-\frac{1}{x}\right)^3=3^3}

❥ Apply Algebraic Identity : \sf{(a -b)^3 = a^3 -b^3-3ab(a-b)}

  • We have \sf{a=x} and \sf{b=1/x} , Now Substitute the Values

\to\sf{\displaystyle x^3-\left(\frac{1}{x}\right)^3-3\cdot \:x\cdot \frac{1}{x}\left(x-\frac{1}{x}\right)=27}

❥ Cancel \sf{x} and \sf{1/x}

\to\sf{\displaystyle x^3-\left(\frac{1}{x}\right)^3-3\left(x-\frac{1}{x}\right)=27}

❥ We are already given that \sf{x-(1/x)=3}

\to\sf{\displaystyle x^3-\left(\frac{1}{x}\right)^3-3\left(3\right)=27}

\to\sf{\displaystyle x^3-\left(\frac{1}{x}\right)^3-9=27}

❥ Add 9 to Both Sides of the Equation

\to\sf{\displaystyle x^3-\left(\frac{1}{x}\right)^3-9+9=27+9}

\bigstar\:\:\underline{\boxed{\to\sf{\displaystyle x^3-\left(\frac{1}{x}\right)^3=\textsf{\textbf{36}}}}}\:\:\bigstar

Similar questions