Math, asked by radhikayadav774, 2 months ago

if x-1/X = 3 , find the value of x²+1/x² and x⁴+1/x⁴​

Answers

Answered by Anonymous
13

 \bf{Given}

 \rm \to \: x -  \dfrac{1}{x}  = 3

 \bf{To \: Find }

 \rm \to \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \\  \rm \to \:  {x}^{4}  +  \frac{1}{ {x}^{4} }

 \bf{Now \:  \: Take }

\rm \to \: x -  \dfrac{1}{x}  = 3

 \bf{Squaring \: on \: both \: sides }

\rm \to \:  \bigg(x -  \dfrac{1}{x} \bigg) ^{2}   = (3)^{2}

 \bf{We \: Get}

 \to \rm\:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \times x \times  \dfrac{1}{x}  = 9

 \rm \to \:  {x}^{2}   + \dfrac{1}{ {x}^{2} }  - 2  =  9

 \rm \to \:  {x}^{2}   + \dfrac{1}{ {x}^{2} }   =  9 + 2

\rm \to \:  {x}^{2}   + \dfrac{1}{ {x}^{2} }   =  11

 \bf{Now \: Take }

\rm \to \:  {x}^{2}   + \dfrac{1}{ {x}^{2} }   =  11

\bf{Squaring \: on \: both \: sides }

\rm \to \:  \bigg( {x}^{2}   + \dfrac{1}{ {x}^{2} }    \bigg) ^{2} =  (11)^{2}

 \rm \to \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  + 2 \times  \dfrac{1}{ {x}^{2} }  \times  {x}^{2}  = 121

 \to \rm \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  + 2 = 121

\to \rm \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 121 - 2

\to \rm \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 119

 \bf{Answer}

\rm \to \:  {x}^{2}   + \dfrac{1}{ {x}^{2} }   =  11

\to \rm \:  {x}^{4}  +  \dfrac{1}{ {x}^{4} }  = 119

Similar questions