Math, asked by XIuhuyasa1202, 10 months ago

If x+1/x=√3, find the value of x³+1/x³

Answers

Answered by avantiraj999
1

Step-by-step explanation:

Given that:-

x +  \frac{1}{x}  =  \sqrt{3}

Find:-

 {x}^{3}  +  \frac{1}{ {x}^{3} }  = what

Solution:-

doing cube root both side:-

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {(x +  \frac{1}{x}) }^{3}  =  \sqrt{3 }  \\  =  >  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3.x. \frac{1}{x} (x +  \frac{1}{x} ) \:  =  {  \: (\sqrt{3} }) \: ^{3}  \\  =  >  {x}^{3}  +   \frac{1}{ {x}^{3} }  + 3. \sqrt{3}  = 3 \\  =  >  {x}^{3}  +   \frac{1}{ {x}^{3} }  = 3 - 3 \sqrt{3}  \\  =  >  {x}^{?}  +  \frac{1}{ {x}^{3} }  = 3(1 -  \sqrt{3 } )

Similar questions