Math, asked by raja8743, 10 months ago

If x-1/x= 3, find the value of x⁴ +1/x⁴​

Answers

Answered by nnethajireddy
22

Answer:

Step-by-step explanation:

Answer : 119

Attachments:
Answered by chaudharyvikramc39sl
5

Answer:

The value of   x^4+\frac{1}{x^4}=119

Step-by-step explanation:

Given that the value of    

                     x-\frac{1}{x} = 3     .........equation (1)

To Find : The value of

                    x^4+\frac{1}{x^4}=?

Solution :

Squaring both sides of equation 1

                     (x-\frac{1}{x})^2 = (3)^2

Since we know that (a-b)^2=a^2+b^2-2\cdot a \cdot b

       x^2+\frac{1}{x^2}-2\cdot x \cdot \frac{1}{x}=9

                 x^2+\frac{1}{x^2}+2=9

                       x^2+\frac{1}{x^2}}=9+2

                       x^2+\frac{1}{x^2}=11         ...........equation (2)

Squaring equation (2) both sides

                                  (x^2+\frac{1}{x^2})^2=(11)^2

                   x^4+\frac{1}{x^4}+2\cdot x^2 \cdot \frac{1}{x^2}=121

                                x^4+\frac{1}{x^4}+2=121

                                      x^4+\frac{1}{x^4}=119

Hence we get that

                               x^4+\frac{1}{x^4}=119

#SPJ2

Similar questions