Math, asked by suklavaishali, 1 year ago

If x+1/x=√3 find x^3+1/x^3

Answers

Answered by prince5132
6

GIVEN...

 =  > x  +  \frac{1}{x}  =  \sqrt{3}

TO FIND...

 =  > the \: value \: of \:  \: x ^{3}  +  \frac{1}{x ^{3} }

IDENTITY USED...

 =  &gt;( x + y) ^{3}  = x ^{3}  + y ^{3} + 3xy(x+y)</p><p></p><h3>SOLUTION...</h3><p></p><p>[tex] =  &gt; x +  \frac{1}{3}  =  \sqrt{3}  \\  \\ by \: cubing \: both \: sides....... \\  \\  =  &gt; (x +  \frac{1}{x} ) ^{3}  = ( \sqrt{3} ) ^{3}  \\  \\  =  &gt; x ^{3}  +  \frac{1}{x ^{3} }  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 3 \times  \sqrt{3}  \\  \\  =  &gt; x ^{3}  +  \frac{1}{x^{3} } + 3(x +  \frac{1}{x}  ) = 3  \sqrt{3} \\  \\ =  &gt;   x ^{3}  +  \frac{1}{x ^{3} }  + 3 \sqrt{3}  = 3 \sqrt{3}  \\  \\  =  &gt; x ^{3}  +   \frac{1}{x ^{3} }  = 3 \sqrt{3}  - 3 \sqrt{3}  \\  \\  =  &gt; x ^{3}  +  \frac{1}{x ^{3} }  = 0

FINAL ANSWER...

 =  &gt; x ^{3}  +  \frac{1}{x ^{3} }  = 0

Similar questions