Math, asked by amansinghyadav0807, 2 months ago

if x-1/x = 3 find x²+1/x² and x⁴+1/x⁴​

Answers

Answered by bhavana6821
0

Answer:

9 and 81

Step-by-step explanation:

(x)2+1 / (x)2 = 9.

(x)4+1 / (x)4 = 81

Answered by TYKE
3

Correct Question :

 \sf \small If  \: x -  \frac{1}{x}  = 3. \: find \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  \: an d\:  {x}^{4} +  \frac{1}{ {x}^{4} }

To find :

 \sf \small {x}^{2}  +  \frac{1}{ {x}^{2} }  \: an d\:  {x}^{4} +  \frac{1}{ {x}^{4} }

Formula Used :

 \sf \small(a - b)^{2}  =  {a}^{2}  -2ab +   {b}^{2}

 \sf \small ({a}^{2}  + {b}^{2} )^{2}  =  {a}^{4}  +  {b}^{4}  +2 {a}^{2} {b}^{2}

Solution :

So the value of x -1/x i.e. 3 is already given

So the value of x -1/x i.e. 3 is already given It would be helpful for getting x² + 1/x²

 \sf \small i) \:  {x}^{2}  +  \frac{1}{ {x}^{2} }

 \sf \small \rightarrow (x -  \frac{1}{x} )^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  -2

  \sf \small \rightarrow {(3)}^{2}   =  {x}^{2}  +  \frac{1}{ {x}^{2} }  -2

 \sf \small \rightarrow9 + 2 =  {x}^{2}   +  \frac{1}{ {x}^{2} }

  \boxed{\sf \small \rightarrow \green{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 11}}

 \sf \small So  \: the  \: value \:  of  \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  \:i s \: 11

Now the second part :

 \sf \small  \:  ii) \:  {x}^{4}  +  \frac{1}{ {x}^{4} }

Applying the value of part (I) we'll get the value of the (ii) part

\sf\small\rightarrow( {x}^{2}   +  \frac{1}{ {x}^{2} } )^{2}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2

 \sf\small\rightarrow {(11)}^{2}  =  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2

 \sf\small\rightarrow {x}^{4}  +  \frac{1}{ {x}^{4} }  = 121 - 2

  \boxed{\sf\small\rightarrow  \pink{{x}^{4} +  \frac{1}{ {x}^{4} }   = 119}}

Final Answer :

 \bullet   \: \sf\small Value \:  of  \: x²  +  \frac{1}{ {x}^{2} } is \:  \boxed{ \blue{11}}

 \bullet \: \sf\small  Value \:  of \:  x⁴  +  \frac{1}{ {x}^{4} }  \:  is \:  \boxed{ \orange{119}}

Similar questions