If, x+1/x = √3 ,Find,x⁶+1
Attachments:
Answers
Answered by
6
Given,
Squaring both sides,
Multiplying both sides of (1) by
Now, adding (1) and (2),
Hence 0 is the answer.
Answered by
3
Answer:
⟶x+
x
1
=
3
\longrightarrow\dfrac{x^2+1}{x}=\sqrt3⟶
x
x
2
+1
=
3
\longrightarrow x^2+1=x\sqrt3⟶x
2
+1=x
3
Squaring both sides,
\longrightarrow (x^2+1)^2=(x\sqrt3)^2⟶(x
2
+1)
2
=(x
3
)
2
\longrightarrow x^4+2x^2+1=3x^2⟶x
4
+2x
2
+1=3x
2
\longrightarrow x^4-x^2+1=0\quad\quad\dots(1)⟶x
4
−x
2
+1=0…(1)
Multiplying both sides of (1) by x^2,x
2
,
\longrightarrow x^6-x^4+x^2=0\quad\quad\dots(2)⟶x
6
−x
4
+x
2
=0…(2)
Now, adding (1) and (2),
\longrightarrow x^6-x^4+x^2+x^4-x^2+1=0+0⟶x
6
−x
4
+x
2
+x
4
−x
2
+1=0+0
\longrightarrow\underline{\underline{x^6+1=0}}⟶
x
6
+1=0
Hence 0 is the answer.
Similar questions