Math, asked by Pritthiraj, 4 months ago

If, x+1/x = √3 ,Find,x⁶+1

Attachments:

Answers

Answered by shadowsabers03
6

Given,

\longrightarrow x+\dfrac{1}{x}=\sqrt3

\longrightarrow\dfrac{x^2+1}{x}=\sqrt3

\longrightarrow x^2+1=x\sqrt3

Squaring both sides,

\longrightarrow (x^2+1)^2=(x\sqrt3)^2

\longrightarrow x^4+2x^2+1=3x^2

\longrightarrow x^4-x^2+1=0\quad\quad\dots(1)

Multiplying both sides of (1) by x^2,

\longrightarrow x^6-x^4+x^2=0\quad\quad\dots(2)

Now, adding (1) and (2),

\longrightarrow x^6-x^4+x^2+x^4-x^2+1=0+0

\longrightarrow\underline{\underline{x^6+1=0}}

Hence 0 is the answer.

Answered by kra56
3

Answer:

⟶x+

x

1

=

3

\longrightarrow\dfrac{x^2+1}{x}=\sqrt3⟶

x

x

2

+1

=

3

\longrightarrow x^2+1=x\sqrt3⟶x

2

+1=x

3

Squaring both sides,

\longrightarrow (x^2+1)^2=(x\sqrt3)^2⟶(x

2

+1)

2

=(x

3

)

2

\longrightarrow x^4+2x^2+1=3x^2⟶x

4

+2x

2

+1=3x

2

\longrightarrow x^4-x^2+1=0\quad\quad\dots(1)⟶x

4

−x

2

+1=0…(1)

Multiplying both sides of (1) by x^2,x

2

,

\longrightarrow x^6-x^4+x^2=0\quad\quad\dots(2)⟶x

6

−x

4

+x

2

=0…(2)

Now, adding (1) and (2),

\longrightarrow x^6-x^4+x^2+x^4-x^2+1=0+0⟶x

6

−x

4

+x

2

+x

4

−x

2

+1=0+0

\longrightarrow\underline{\underline{x^6+1=0}}⟶

x

6

+1=0

Hence 0 is the answer.

Similar questions