If x+1/x= √3. Fond the value of x³+1/x³
Answers
Answered by
1
@
x+1/x=√3
(x+1/x)³=x³+1/x³+3x×1/x(x+1/x)
(√3)³=x³+1/x³+3(√3)
3√3=x³+1/x³+3√3
3√3-3√3=x³+1/x³
0=x³+1/x³
@:-)
x+1/x=√3
(x+1/x)³=x³+1/x³+3x×1/x(x+1/x)
(√3)³=x³+1/x³+3(√3)
3√3=x³+1/x³+3√3
3√3-3√3=x³+1/x³
0=x³+1/x³
@:-)
Answered by
1
x+1/x = √3
Cubing on both sides,
(x+1/x)³ = √3³
x³+1/x³+3(x)(1/x)[x+1/x] = 3√3
x³ + 1/x³ + 3(√3) = 3√3
x³ + 1/x³ = 3√3-3√3
x³ + 1/x³ = 0
Hope it helps
Cubing on both sides,
(x+1/x)³ = √3³
x³+1/x³+3(x)(1/x)[x+1/x] = 3√3
x³ + 1/x³ + 3(√3) = 3√3
x³ + 1/x³ = 3√3-3√3
x³ + 1/x³ = 0
Hope it helps
Similar questions