Math, asked by astitva60, 9 months ago

if (x-1/x=√3 then find the value of (x^2+1/x^2)and(x^4+1/x^4)​

Answers

Answered by Darkrai14
124

Given:-

\sf x - \dfrac{1}{x} = \sqrt{3}

To find:-

  • \sf x^2 + \dfrac{1}{x^2}
  • \sf x^4 + \dfrac{1}{x^4}

Solution:-

We know that (a-b)^2 = a^2 +b^2 -2ab

Using this identity,

\sf \Bigg ( x - \dfrac{1}{x} \Bigg )^2 = x^2 + \dfrac{1}{x^2} - 2 \times x \times \dfrac{1}{x}

\sf \implies ( \sqrt{3})^2 = x^2 + \dfrac{1}{x^2} - 2

\sf \implies 3= x^2 + \dfrac{1}{x^2} - 2

\sf \implies 3+2= x^2 + \dfrac{1}{x^2}

\sf \implies 5= x^2 + \dfrac{1}{x^2}

___________________________________

Now we will find \sf x^4 + \dfrac{1}{x^4}

Squaring  x^2 + \dfrac{1}{x^2} and using identity (a+b)² = a²+b² + 2ab

\sf \implies \Bigg (x^2 + \dfrac{1}{x^2} \Bigg )^2 = (x^2)^2 + \Bigg ( \dfrac{1}{x^2} \Bigg )^2 + 2 \times x^2 \times \dfrac{1}{x^2}

\sf \implies (5 )^2 = x^4 +  \dfrac{1}{x^4}  + 2

\sf \implies 25 = x^4 +  \dfrac{1}{x^4}  + 2

\sf \implies 25 - 2= x^4 +  \dfrac{1}{x^4}

\sf \implies 23= x^4 +  \dfrac{1}{x^4}

____________________________________

Value of \sf x^2 + \dfrac{1}{x^2} = 5

And value of \sf x^4 + \dfrac{1}{x^4} = 23

Hope it helps.

Similar questions