Math, asked by richaajmer2005, 1 year ago

If x + 1/x =√3 , then find the value of x^3 + 1/x^3

Answers

Answered by sivaprasath
1

Answer:

0

Step-by-step explanation:

Given :

To find the value of : x^3 + \frac{1}{x^3}

if x +\frac{1}{x}=\sqrt{3}.

Solution :

We know that,

(a + b)^3= a^3 + b^3 + 3ab(a + b)

(a + b)^3 - 3ab(a + b) = a^3 + b^3

Here, by substituting, a = x and b = \frac{1}{x},

We get,

(x + \frac{1}{x})^3 - 3(x)(\frac{1}{x}) = (x)^3 + (\frac{1}{x})^3

(\sqrt{3})^3 - 3(\frac{1 \times x}{x} )(\sqrt{3}) = x^3 + \frac{1}{x^3}

⇒ ⇒ (\sqrt{3})^3 = \sqrt{3 \times 3 \times 3} = 3\sqrt{3} ,

⇒ ⇒ - 3(\frac{1 \times x}{x} )(\sqrt{3}) = -3\sqrt{3}

So,

(\sqrt{3})^3 - 3(\frac{1 \times x}{x} )(\sqrt{3}) = 3\sqrt{3} - 3\sqrt{3} = 0

x^3 + \frac{1}{x^3} = 0


richaajmer2005: Thank
sivaprasath: np
Similar questions