Math, asked by ajanakisrinavassrina, 6 months ago


If x+1/x=3, then find the value of x³+1/ x³​

Answers

Answered by TheProphet
2

S O L U T I O N :

\underline{\bf{Given\::}}

If x + 1/x = 3..........(1)

\underline{\bf{Explanation\::}}

\longrightarrow\tt{x + \dfrac{1}{x}  = 3}

Cubing on both sides :

\longrightarrow\tt{\bigg(x + \dfrac{1}{x}\bigg)^{3}  = (3)^{3}}

\longrightarrow\tt{(x)^{3} +\bigg(\dfrac{1}{3} \bigg)^{3} + 3 \times x \times 1/x (x + 1/x) = 27}

\longrightarrow\tt{(x)^{3} +\bigg(\dfrac{1}{3} \bigg)^{3} + 3 \times \cancel{x} \times 1/\cancel{x} (3) = 27\:\:\:[from(1)]}

\longrightarrow\tt{(x)^{3} +\bigg(\dfrac{1}{3} \bigg)^{3} + 3(3)  = 27}

\longrightarrow\tt{(x)^{3} +\bigg(\dfrac{1}{3} \bigg)^{3} + 9  = 27}

\longrightarrow\tt{(x)^{3} +\bigg(\dfrac{1}{3} \bigg)^{3} =27-9}

\longrightarrow\tt{(x)^{3} +\bigg(\dfrac{1}{3} \bigg)^{3} =18}

Thus,

The value of x³ + 1/x³ will be 18 .

Answered by dibyangshughosh309
45

 \huge{ \underline{ \tt{Given \ratio}}}

 \bf \: x +  \frac{1}{x }  = 3

Now on cubing both the sides; we get;

 \to \bf (x +  \frac{1}{x} {)}^{3}  = (3 {)}^{3}

 \tt \{using \: (a + b) {}^{3}  = {a}^{3} +  {b}^{3}   + 3a {}^{2} b + 3ab {}^{2}   \}

 \bf \to(x {)}^{3}  + (  \frac{1}{x}  {)}^{3}  + 3(x {)}^{2}  \frac{1}{x}  + 3x( \frac{1}{x}  {)}^{2}  = 27

 \bf \to {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3. { \cancel{x}}^{2} . \frac{1}{ \cancel{x}}  + 3. \cancel{x}. \frac{1}{ { \cancel{x}}^{2} }  = 27

 \bf \to {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3x + 3 \frac{1}{x}  = 27

Now on taking out commons; we get;

 \bf \to {x}^{3}  +  \frac{1}{ {x}^{3} } + 3(x +  \frac{1}{x}  ) = 27

As we know,

 \tt (x +  \frac{1}{x}  = 3)

 \bf \to {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(3) = 27

 \bf \to {x}^{3}  +  \frac{1}{ {x}^{3} }  + 9 = 27

 \bf \to {x}^{3}  +  \frac{1}{ {x}^{3} }  = 27 - 9

 \bf \to {x}^{3}  +  \frac{1}{ {x}^{3} }  =  \red{18}

Therefore,

 \tt  the \: value \: of \:  \boxed{ \bf{x}^{3}  +  \frac{1}{ {x}^{3}  }  = 18}

Similar questions