Math, asked by sonandchowdary, 7 months ago

if x+1/x=3,then find the value of
x³+1/x³


please tell me the answer​

Answers

Answered by Anonymous
4

Given :

  • x + 1/x = 3

To find :

  • value of x³+1/x³

Solution :

x + 1/x = 3

(x - 1/x)³ = 3³

x³ + 1/x³ + 3x 1/x (x + 1/x) = 27

x³ + 1/x³ + 3 × 3 = 27

x³ + 1/x³ + 9 = 27

x³ + 1/x³ = 27 - 9

x³ + 1/x³ = 18

Value of x³+1/x³ is 18

Answered by misscutie94
153

Answer:

Given :-

▪️x + \dfrac{1}{x} = 3

To Find :-

▪️ x³ + \dfrac{1}{x³} = ?

Solution :-

x + \dfrac{1}{x} = 3

By cubing both sides we get,

=> ( x + \dfrac{1}{x} )³ = (3)³

=> x³ + 3.x².\dfrac{1}{x} + 3.x.\dfrac{1}{x²} + \dfrac{1}{x³} = 27

=> ( x³ + \dfrac{1}{x³} ) + 3.x².\dfrac{1}{x} + 3.x.\dfrac{1}{x²} = 27

=> x³ + \dfrac{1}{x³} + ( 3x + \dfrac{3}{x} ) = 27

=> x³ + \dfrac{1}{x³} + 3(x + \dfrac{1}{x}) = 27

=> x³ + \dfrac{1}{x³} + 3 × 3 = 27

=> x³ + \dfrac{1}{x³} + 9 = 27

=> x³ + \dfrac{1}{x³} = 27 - 9

\dashrightarrow x³ + \dfrac{1}{x³} = 18

Hence, the value of x³ + \dfrac{1}{x³} = 18

______________ ⚜️ ______________

Similar questions