Math, asked by dhabadegargii, 9 months ago

If x-(1/x) = 3 . Then find using identity x^2- (1/x^2)

Answers

Answered by Sudhir1188
5

Question should be:

  • If x-(1/x) = 3 . Then find using identity x²+ (1/x²)

ANSWER:

  • Value of the above expression is 11.

GIVEN:

x -  \dfrac{1}{x}  = 3

TO FIND:

x {}^{2}  + \dfrac{1}{x {}^{2} }

SOLUTION:

 \implies \: x -  \dfrac{1}{x}  = 3 \\  \\   \:  \:  \:  \: squaring \: both \: sides \\  \implies \: (x -  \dfrac{1}{x} ) {}^{2}  = (3) {}^{2}  \\  \\  \implies \: (x) {}^{2}  +(  \dfrac{1}{x} ) {}^{2}  - 2 \times x \times  \dfrac{1}{x}  = 9 \\  \\  \implies \: x {}^{2}  +  \dfrac{1}{x {}^{2} }  - 2 = 9 \\  \\  \implies \: x {}^{2}  +  \dfrac{1}{x {}^{2} }  = 9 + 2 \\  \\  \implies \: x {}^{2}  +  \dfrac{1}{x {}^{2} }  = 11

Value of the above expression is 11.

Answered by narendrakumar7778
2

Answer:

x-1/x=3

then,

(x²)-(1/x)²=(x+1/x)(x-1/x) (using the identity a²-b²)

= (x+1/x)*3

= 3x+3/x

and,

(x-1/x)²=(x-1/x)²

(3)² =x²+1/x²-2

9 = x²+1/x²-2

:. x²+1/x²=9+2

= 11.

here is your answer mates!!!

Similar questions