Math, asked by salinivs6mge, 11 months ago

If x+1÷x=3. Then find x^3 +1÷x^3

Answers

Answered by Anonymous
11

\blue{\rm{ANSWER}}

\boxed{\red{18}}

\boxed{\orange{\rm{Given\:Question\:is}}}

\rm{\left(x+\frac{1}{x}\right)=3}

\mathbb{EXPLANATION}

\rm{\left(x+\frac{1}{x}\right)=3}

\rm{\green{Cubing\:On\:BothSide\:We\:Have}}

\rm{\left(x+\frac{1}{x}\right)^3=3^3}

\rm{x^3+\left(\frac{1}{x^3}\right)+3\left(x+\frac{1}{x}\right)=27}

\boxed{\mathbb{BECOZ\:\:\:\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)}}

\rm{x^3+\left(\frac{1}{x^3}\right)+3\left(3\right)=27}

\rm{x^3+\left(\frac{1}{x^3}\right)+9=27}

\rm{x^3+\left(\frac{1}{x^3}\right)=27-9}

\rm{x^3+\left(\frac{1}{x^3}\right)=18}

\therefore\;\;{\rm{x^3+\left(\frac{1}{x^3}\right)=18}}

Answered by LovelyG
9

Answer:

\large{\underline{\boxed{ \sf  {x}^{3}  +  \frac{1}{ {x}^{3} }=18}}}

Step-by-step explanation:

Given that ;

 \sf x +  \dfrac{1}{x}  = 3

On cubing both sides ;

\implies \sf \left(x +  \frac{1}{x}  \right)^{3}  = (3)^{3}  \\  \\ \implies \sf  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \: . \: x \:  .\:  \frac{1}{x} (x +  \frac{1}{x} ) = 27 \\  \\ \implies \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } + 3(3) = 27 \\  \\ \implies \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } + 9 = 27 \\  \\ \implies \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } = 27 - 9 \\  \\ \implies \sf  {x}^{3}  +  \frac{1}{ {x}^{3} } = 18

Hence, the answer is 18.

Similar questions