Math, asked by samir7518, 1 year ago

if x-1/x=3 then find x³-1/x³​

Answers

Answered by Anonymous
4

Given: \:\sf{x -  \frac{1}{x}  = 3}

To find: \:\sf{ {x}^{3}  -  \frac{1}{ {x}^{3} } }

 \sf{(x -  \frac{1}{x} )}^{3}  =  {3}^{3}

 \sf{{x}^{3}  -  \frac{1}{x^{3}}  - 3(x -  \frac{1}{x}) =  27}

 \sf{{x}^{3}  -  \frac{1}{x^{3}}  - 3(3) =  27}

 \sf{{x}^{3}  -  \frac{1}{x^{3}}  - 9=  27}

\sf{{x}^{3}  -  \frac{1}{x^{3}}  =  27 - 9}

 \fbox{\sf{{x}^{3}  -  \frac{1}{x^{3}}  =  18}}

Answered by harsimrang053
3

Answer:

Given:\:\sf{x - \frac{1}{x} = 3}x−

x

1

=3

To find:\:\sf{ {x}^{3} - \frac{1}{ {x}^{3} } }x

3

x

3

1

\sf{(x - \frac{1}{x} )}^{3} = {3}^{3}(x−

x

1

)

3

=3

3

\sf{{x}^{3} - \frac{1}{x^{3}} - 3(x - \frac{1}{x}) = 27}x

3

x

3

1

−3(x−

x

1

)=27

\sf{{x}^{3} - \frac{1}{x^{3}} - 3(3) = 27}x

3

x

3

1

−3(3)=27

\sf{{x}^{3} - \frac{1}{x^{3}} - 9= 27}x

3

x

3

1

−9=27

\sf{{x}^{3} - \frac{1}{x^{3}} = 27 - 9}x

3

x

3

1

=27−9

\fbox{\sf{{x}^{3} - \frac{1}{x^{3}} = 18}}

Similar questions