Math, asked by brukumarsanjitp8mipn, 1 year ago

if x+1/x=3,then the value of x5+1/x5 is

Answers

Answered by sourasghotekar123
2

Step 1: Given data

x+\frac{1}{x}=3---(1)

x^{5} +\frac{1}{x^{5} }=?

Step 2: Calculating the required value

squaring both sides of (1),

(x+\frac{1}{x})^{2} =3^{2} \\\\x^{2} +\frac{1}{x^{2} } +2=9\\\\x^{2} +\frac{1}{x^{2} } =7---(2)

taking cube on both sides of  (1),

(x+\frac{1}{x})^{3} =3^{3} \\\\x^{3} +\frac{1}{x^{3} } +3\times x\times\frac{1}{x}(x+\frac{1}{x})  =27\\\\x^{3} +\frac{1}{x^{3} } +3(3)  =27\\\\\\x^{3} +\frac{1}{x^{3} } +9  =27\\\\x^{3} +\frac{1}{x^{3} }   =27-9=18----(3)

squaring both sides of (2),

(x^{2} +\frac{1}{x^{2} })^{2}  =7^{2} \\\\x^{4} +\frac{1}{x^{4} } +2=49\\\\x^{4} +\frac{1}{x^{4} }=49-2=47---(4)\\

Multiplying (1) by (4),

(x+\frac{1}{x})(x^{4} +\frac{1}{x^{4} })=3\times47\\\\x^{5} +\frac{1}{x^{3} }+x^{3} +\frac{1}{x^{5} }=141\\\\x^{5}  +\frac{1}{x^{5} }=141-(\frac{1}{x^{3} }+x^{3})\\\\x^{5}  +\frac{1}{x^{5} }=141-(18)=123\\

Hence, the value of the given expression is 123.

#SPJ2

Answered by syed2020ashaels
0

Answer:

The value of x^5+\frac{1}{x^5} = 123

Step-by-step explanation:

  • Now it is given to us that
    x+\frac{1}{x} = 3 ----1
  • When we square on both the sides we get
    (x + \frac{1}{x} )^2  = 3^2\\x^2 + \frac{1}{x^2} +2 = 9\\x^2 + \frac{1}{x^2} = 7-------- 2
  • Now again squaring on both the sides we get
    (x^2 + \frac{1}{x^2})^2 = 7^2\\x^4 + \frac{1}{x^4} +2 = 49\\x^4 + \frac{1}{x^4} = 47---------- 3
  • Now by taking cube on both the sides in equation 1 we get
    (x + \frac{1}{x} )^3  = 3^3\\x^3 + \frac{1}{x^3} + 3 (x + \frac{1}{x}) = 27\\x^3 + \frac{1}{x^3} +3*3 = 27\\x^3 + \frac{1}{x^3}  = 18------------- 4
  • Now on multiplying equation 3 with equation 1 we get
    (x+\frac{1}{x}) (x^4+\frac{1}{x^4}) = 3 * 47\\x^5+ \frac{1}{x^5}+ x^3+ \frac{1}{x^3} = 141\\x^5+ \frac{1}{x^5} + 18 =141\\x^5+ \frac{1}{x^5} =141-18\\x^5+ \frac{1}{x^5} = 123
  • So the value of x^5+\frac{1}{x^5} = 123
    #SPJ2
Similar questions