Math, asked by ishmalmano210, 1 month ago

if x+1/x = 3 then what is x²+1/x²​

Answers

Answered by Itzheartcracer
8

Given :-

\sf\bigg(x+\dfrac{1}{x}\bigg)

To Find :-

\bigg(x^2+\dfrac{1}{x^2}\bigg)

Solution :-

We know that

(a + b)² = a² + 2ab + b²

\sf\bigg(x+\dfrac{1}{x}\bigg)

\sf \bigg(x+\dfrac{1}{x^2}\bigg)

\sf x^2+2\times x^2\times\dfrac{1}{x^2}+\dfrac{1}{x^2}=(3)^2

\sf x^2+\dfrac{1}{x^2}+2=9

\sf x^2+\dfrac{1}{x^2}=9-2

\sf x^2+\dfrac{1}{x^2}=7

Answered by Anonymous
53

\large \bigstar \: \sf \underline\bold{ \underline{Given : }}\\ \\

 \sf \bold{\bigg(x +  \frac{1}{x}  = 3\bigg)}\\\\

   \large\bigstar \:  \sf \underline\bold{ \underline{To  \: find: }}\\\\

 \sf \bold{\bigg({x}^{3}  +  \frac{1}{ {x}^{3} } \bigg)}\\\\

\large \bigstar \: \sf \underline\bold{ \underline{Solution: }}\\\\

 :  \implies \:  \red{\boxed{  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 18} \: }  \green\bigstar\\\\

Formula used:-

</p><p>\underline{\boxed{\sf{\pm{ \bold{\green{{(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b) }}}}}}\:\red{\bigstar}\\\\

Given that,

  : \implies \sf \bold  \: x +  \frac{1}{x}  = 3 \\\\

\sf \bold\blue {\underline{Taking  \: cube \:  on \:  both  \: sides,}}\\\\

 : \implies \sf \bold \:  { \bigg(x +  \frac{1}{x}  \bigg)}^{3}  =  {(3)}^{3}\\\\

 \sf \bold \orange{ \underline{Using \:  the  \: given \:  formula,}}\\\\

: \implies \sf \bold \:  {\small  {x}^{3}  +   { \big( \frac{1}{x}  \big)}^{3}  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 27} \\\\

: \implies \sf \bold \:  {\rightarrow \:  {x}^{3} +  \frac{1}{ {x}^{3} }   + 3 \times (3) = 27 }\\  \\

 : \implies \sf \bold \:  {\because \: x +  \frac{1}{x}  = 3 } \\\\

:\implies \:\underline{\boxed{\frak{\pm{\pink{{x}^{3}  +  \frac{1}{ {x}^{3} }  = 18}}}}}\:\red{\bigstar}\\\\

Similar questions