Math, asked by KuhuPatel17, 9 months ago

If x + 1/x = 3 , then x^2 + 1/x^2 = ?​

Answers

Answered by SidharthR
3

Answer:

7

Step-by-step explanation:

if x+1/x =3 , then

(x+ 1/x)² =3²

[according to identity - (a+ 1/a)² =a²+ 1/a² +2 ]

,

x² +1/x² +2 = 9

x² +1/x² = 9-2 = 7

Answered by prince5132
6

GIVEN

 \\  \red \bigstar \displaystyle \tt \: x +  \dfrac{1}{x}  = 3 \\

TO FIND :-

 \\  \red \bigstar  \: \displaystyle \tt value \: of \:  \: \: x ^{2}  +  \dfrac{1}{x ^{2} }  = 3 \\

SOLUTION :-

  \\  \longmapsto \displaystyle \tt \: x +  \dfrac{1}{x}  = 3 \\  \\

 \orange \bigstar \blue  {\displaystyle \: \tt  Squaring  \:  \: both  \:  \: sides .\: } \\  \\

\longmapsto \: \displaystyle \tt   \bigg(\: x +  \dfrac{1}{x }  \bigg) ^{2}  =( 3) ^{2}  \\  \\

\orange \bigstar \blue  {\displaystyle \: \tt Using \:  identity :- (a + b)^{2} = a^{2} + b^{2} + 2ab } \\  \\

 \longmapsto \: \displaystyle \tt value \: of \:  \: \: (x )^{2}  +  \bigg( \dfrac{1}{x   }  \bigg)^{2}   + 2 \times \cancel x \times  \dfrac{1}{ \cancel x} = 9 \\   \\

 \longmapsto \: \: \displaystyle \tt value \: of \:  \: \: x ^{2}  +  \dfrac{1}{x ^{2} } + 2  = 9 \\   \\

\longmapsto \: \: \displaystyle \tt value \: of \:  \: \: x ^{2}  +  \dfrac{1}{x ^{2} }  = 9 - 2 \\  \\

\red \bigstar \:  \boxed{\displaystyle \tt value \: of \:  \: \: x ^{2}  +  \dfrac{1}{x ^{2} }  = 7}  \: \red \bigstar \\  \\

 \underline{ \underline{  \displaystyle \: \tt \therefore \:Hence \:  the \:  required \:  value \: is \: 7.}} \\

Some Identities :-

 \: \blue \bigstar \displaystyle \tt  (a + b)^{2} = a^{2} + b^{2} + 2ab\\  \\

 \: \blue \bigstar \displaystyle \tt (a - b)^{2} = a^{2} - b^{2} + 2ab

Similar questions