Math, asked by karunyareddy, 10 months ago

if x+1/x=3 what is x^3+1/x^3=​

Answers

Answered by abhi569
1

Answer:

Required value of x^3 + 1 / x^3 is 18

Step-by-step explanation:

Here,

x + 1 / x = 3

Cubing on both sides :

= > ( x + 1 / x )^3 = 3^3

= > x^3 + ( 1 / x )^3 + 3( x × 1 / x )( x + 1 / x ) = 27 { Using ( a + b )^3 = a^3 + b^3 + 3ab( a + b ) }

= > x^3 + 1 / x^3 + 3( 1 )( 3 ) = 27 { x + 1 / x = 3, from question }

= > x^3 + 1 / x^3 + 9 = 27

= > x^3 + 1 / x^3 = 18

Hence the required value of x^3 + 1 / x^3 is 18.

Answered by Sharad001
63

Question :-

 \texttt{if} \: x \: +  \frac{1}{x}  = 3 \:  \texttt{then\: find \:}  {x}^{3}  +  \frac{1}{ {x}^{3} }

Answer :-

 \implies \:  \red{\boxed{  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 18} \: }

Formula used:-

 \star \boxed{ {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)}

Step - by - step explanation :-

Given that,

 \rightarrow \: x +  \frac{1}{x}  = 3 \\

Taking cube on both sides,

 \rightarrow \:  { \bigg(x +  \frac{1}{x}  \bigg)}^{3}  =  {(3)}^{3} \\

Using the given formula,

  \small  {x}^{3}  +   { \big( \frac{1}{x}  \big)}^{3}  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 27 \\  \\  \rightarrow \:  {x}^{3} +  \frac{1}{ {x}^{3} }   + 3 \times (3) = 27 \\   \because \: x +  \frac{1}{x}  = 3 \\  \\  \rightarrow \: \boxed{  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 18}

Similar questions