If (x+1)(x+3)(x+5)(x+7)=5760, find the real values of x.
A. 5,13
B. -5,13
C. -5,-13
D. 5,-13
Answers
Answered by
2
If (x+1)(x+3)(x+5)(x+7)=5760, find the real values of x.
Solution,
Option D is the right answer,
(5+1)(5+3)(5+5)(5+7)=5760
6*8*10*12=5760
5760=5760
(-13+1)(-13+3)(-13+5)(-13+7)=5760
-12*-10*-8*-6=5760
5760=5760
(x+1)(x+3)(x+5)(x+7)=5760 ---->A
Above equation has symmetry that is around 4 (highest power 4). so put x=b-4 in eq A
(b−3)(b−1)(b+1)(b+3)=5760 --->B
(b^2-9)(b^2-1)=5760 --->C
Now substitute z+5 in equation C in (b^2)
(z+5-9)(z+5-1)=5760
(z-4)(z+4)=5760
z^2-16=5760
z^2=5776
taking root on both sides,
z=+76, z=-76
b^2=z+5=76+5
b^2=81
(b^2-9)(b^2-1)=5760 --->C
Put b^2=81 in eq C,
(81-9)(81-1)=5760
72*80=5760
5760=5760
Answered by
4
option D is the correct answer.
Similar questions