if x-1/x=3find the values of x²+1/x²and x⁴+1/x⁴.
Answers
Answered by
7
EXPLANATION.
⇒ x - 1/x = 3.
As we know that,
⇒ (a - b)² = a² + b² - 2ab.
Using this formula on equation, we get.
Squaring on both sides, we get.
⇒ (x - 1/x)² = (3)².
⇒ (x² + 1/x² - 2(x)(1/x)) = 9.
⇒ (x² + 1/x² - 2) = 9.
⇒ (x² + 1/x²) = 9 + 2.
⇒ (x² + 1/x²) = 11.
Again, squaring on both sides, we get.
⇒ (x² + 1/x²)² = (11)².
⇒ (x⁴ + 1/x⁴ + 2(x⁴)(1/x⁴) = 121.
⇒ (x⁴ + 1/x⁴ + 2) = 121.
⇒ (x⁴ + 1/x⁴) = 121 - 2.
⇒ (x⁴ + 1/x⁴) = 119.
Value of (x² + 1/x²) = 11.
Value of (x⁴ + 1/x⁴) = 119.
BrainIyMSDhoni:
Superb :)
Answered by
1
Appropriate Question
- if x-1/x=3find the values of x²+1/x²and x⁴+1/x⁴.
☯Solution ☯
::==> x^2+1/x^2=(x-1/x)^2+2x.1/x
=(3)^2+2=9+2=11
::==> x^4+1/x^4=(x^2+1/x^2)^2-2x^2.1/x^2
=(11)^2-2=121-2=119
Similar questions