IF x+1/x=4,find
(i) x²+1/x²
(ii) x-1/x
(iii) x³-1/x³
plz help
first one will be brainliest
PLZ WRITE CORRECT ASWER
Answers
Given : x + 1/x = 4
To find : (I) x² + 1/x²
(ii) x - 1/x
(iii) x³ - 1/x³
solution : as it is given that, x + 1/x = 4
squaring both sides we get,
(x + 1/x)² = 4²
⇒x² + 1/x² + 2 × x × 1/x = 16
⇒x² + 1/x² + 2 = 16
⇒x² + 1/x² = 14 ......(1)
(ii) we know, (a - b)² = (a + b)² - 4ab
⇒(x - 1/x)² = (x + 1/x)² - 4 × x × 1/x
⇒(x - 1/x)² = (4)² - 4
⇒(x - 1/x)² = 16 - 4 = 12
⇒(x - 1/x) = 2√3 .........(2)
(iii) we know, a³ - b³ = (a - b)³ + 3ab(a - b)
so, x³ - 1/x³ = (x - 1/x)³ + 3 × x × 1/x (x - 1/x)
= (2√3)³ + 3(2√3)
= 24√3 + 6√3 = 30√3
so, (x³ - 1/x³) = 30√3 .............(3)
(i) x²+1/x² = 14
(ii) x-1/x = 2√3
(iii) x³-1/x³ = 18√3
Step-by-step explanation:
Given: x+1/x = 4
Find: (i) x²+1/x²
(ii) x-1/x
(iii) x³-1/x³
Solution:
(i) x²+1 / x² = (x + 1/x)² - 2 from the expression (a+b)² = a² + b² + 2ab
= 4² - 2
= 16 - 2
= 14
(ii) x - 1/x.
(x - 1/x)² = (x + 1/x)² - 4 = 16- 4 = 12
x - 1/x = root of 12 = 2√3
(iii) x³ - 1/x³ = (x - 1/x)³ - 3 (x - 1/x) = (2√3)³ - 3(2√3) = 24√3 - 6√3 = 18√3