Math, asked by abdeali2201, 11 months ago

If (x-1/x)=4, find the value of
(i) (x^2+1/x^2)
(ii) (x^4+1x^4)​

Answers

Answered by TakenName
1

Answer:

  1. 18
  2. 322

Step-by-step explanation:

--------------------------

(x-\frac{1}{x} )^2=x^2+\frac{1}{x^2} -2 --- Identity 1

By adding 2 on both sides, we get :

(x-\frac{1}{x} )^2+2=x^2+\frac{1}{x^2} --- 1'

(x^2+\frac{1}{x^2} )^2=x^4+\frac{1}{x^4} +2 --- Identity 2

By subtracting 2 on both sides, we get :

(x^2+\frac{1}{x^2} )^2-2=x^4+\frac{1}{x^4} --- 2'

--------------------------

(i) x^2+\frac{1}{x^2}

x^2+\frac{1}{x^2}=(4)^2+2 *From 1'

x^2+\frac{1}{x^2}=18

(ii) x^4+\frac{1}{x^4}

x^4+\frac{1}{x^4}=(18)^2-2 *From 2'

x^4+\frac{1}{x^4}=322

If it helps then please mark as brainliest!!

Similar questions