Math, asked by smita18, 10 months ago

If ( x+1/x)= 4 find the value of

x {}^{2}  +  \frac{1}{x{ {}^{2} } }
x {}^{4}  +    \frac{1} x {}^{2}

Answers

Answered by EliteSoul
0

Step-by-step explanation:

\huge\bf\orange{Given:-}

x +  \frac{1}{x}  = 4

\huge\bf\orange{To find out:-}

value \: of \:  \:  \: x {}^{2}  +  \frac{1}{x {}^{2} }  \\ value \: of \:  \:  \: x {}^{4}  +  \frac{1}{x {}^{4} }

\huge\bf\orange{Solution:-}

x {}^{2} +  \frac{1}{x {}^{2} }  = (x +  \frac{1}{x} ) {}^{2} - 2 \times x \times  \frac{1}{x}   \\  = 4 {}^{2}  - 2 \\  = 16 - 2 \\  = 14

x {}^{4}  +  \frac{1}{x {}^{4} } = (x {}^{2}   +  \frac{1}{x {}^{2} }) {}^{2}  - 2 \times x {}^{2} \times  \frac{1}{x {}^{2} }  \\  =   1</strong><strong>4</strong><strong> {}^{2}  - 2 \\  = </strong><strong>1</strong><strong>9</strong><strong>6</strong><strong> - 2 \\  = </strong><strong>1</strong><strong>9</strong><strong>4

Follow me

Mark brainliest

Sakib

Answered by ITzBrainlyGuy
1

Answer:

hope this helps you please mark it as brainliest

Attachments:
Similar questions