Math, asked by Dishachopra, 10 months ago

If x+1/x=4,find the value of x-1/x​

Answers

Answered by BrainlyPopularman
5

Question :

If  \: { \bold{x +  \dfrac{1}{x}  = 4}} , then find the value of  \: { \bold{x   -   \dfrac{1}{x}  }} .

ANSWER :

 \\  \longrightarrow \:  {  \boxed{ \bold{x  -  \dfrac{1}{x}  =  \pm \sqrt{12} }}} \\

EXPLANATION :

GIVEN :

Value of  \: { \bold{x    +    \dfrac{1}{x}  }} is 4.

TO FIND :

 \: { \bold{x  -  \dfrac{1}{x} =  \:  ? }}

SOLUTION :

  \\ \implies { \bold{x   +   \dfrac{1}{x} =  4}} \\

• Square both side –

  \\ \implies { \bold{(x   +   \dfrac{1}{x}) ^{2}  =   {(4)}^{2} }} \\

  \\ \implies { \bold{ {x}^{2}   +   \dfrac{1}{ {x}^{2} }  + 2(x)( \frac{1}{x} )=   16 }} \\

  \\ \implies { \bold{ {x}^{2}   +   \dfrac{1}{ {x}^{2} }  + 2 =   16 }} \\

  \\ \implies { \bold{ {x}^{2}   +   \dfrac{1}{ {x}^{2} }   =   16  - 2 }} \\

  \\ \implies { \bold{ {x}^{2}   +   \dfrac{1}{ {x}^{2} }   =   14 \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1) }} \\

• Now –

 \\  \implies \:  { \bold{(x  -  \dfrac{1}{x} ) ^{2} =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   - 2(x)( \dfrac{1}{x} )}} \\

 \\  \implies \:  { \bold{(x  -  \dfrac{1}{x} ) ^{2} =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   - 2}} \\

 \\  \implies \:  { \bold{(x  -  \dfrac{1}{x} ) ^{2} = 14  - 2 \:  \:  \: [using \:  \: eq.(1)]}} \\

 \\  \implies \:  { \bold{(x  -  \dfrac{1}{x} ) ^{2} = 12}} \\

• Now take square root on both side –

 \\  \implies \:  {  \boxed{ \bold{x  -  \dfrac{1}{x}  =  \pm \sqrt{12} }}} \\

Used formula :

 \\   \:  { \bold{ (1)  \:  \: {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2} + 2ab  }} \\

 \\   \:  { \bold{ (2)  \:  \: {(a  -  b)}^{2}  =  {a}^{2}  +  {b}^{2}  -  2ab  }} \\

Similar questions