if (x + 1/x) = 4, find the value of : (x - 1/x)
Answers
Answer:
,jtyzzotsoyxyoxozoyzkhxsowle3u3u03lxg2xg dhele dilo ami 3kb
Step-by-step explanation:
Given :-
x+(1/x) = 4
To find :-
Find the following :
I) x-(1/x)
ii) x²+(1/x²)
Solution :-
Given that x+(1/x) = 4 ---------(1)
On squaring both sides then
=> [ x+(1/x)]² = 4²
=> x²+2(x)(1/x)+(1/x)² = 16
Since (a+b)² = a²+2ab+b²
Where, a = x and b = 1/x
=> x²+2(x/x) +(1/x²) = 16
=> x²+2(1)+(1/x²) = 16
=> x²+2+(1/x²) = 16
=> x²+(1/x²) = 16-2
=> x²+(1/x²) = 14 ---------------(2)
We know that
(a-b)² = (a+b)² -4ab
On applying this formula to the given problem
=>[x-(1/x)]² = [x+(1/x)]² -4(x)(1/x)
=> [x-(1/x)]² = [x+(1/x)]²-4(x/x)
=> [x-(1/x)]² = [x+(1/x)]²-4(1)
=> [x-(1/x)]² = [x+(1/x)]²-4
=> [x-(1/x)]² = 4²-4
=> [x-(1/x)]² = 16-4
=> [x-(1/x)]² = 12
=> [x-(1/x)] = ±√12
Therefore x-(1/x) = √12 or -√12
Answer :-
I) The value of x-(1/x) = √12 or -√12
II) The value of x²+(1/x²) = 14
Used formulae:-
→ (a+b)² = a²+2ab+b²
→ (a-b)² = (a+b)² -4ab