Math, asked by sagarsingh0888, 8 months ago

if x-1/x=4 find the value of x^2-1/x^2 and x^4-1/x^4

Answers

Answered by srijansarvshresth135
4

Answer:

x -  \frac{1}{x} = 4

Squaring both sides, we get,

 {x}^{2} +  \frac{1}{ {x}^{2} } - 2.x. \frac{1}{x} = 16

 {x}^{2} +  \frac{1}{ {x}^{2} } = 18

Step-by-step explanation:

(x +  \frac{1}{x})^{2} =  {x}^{2} +  \frac{1}{x^{2} } + 2.x. \frac{1}{x}

 = 20

x +  \frac{1}{x} =  \sqrt{20}

 {x}^{2} -  \frac{1}{ {x}^{2} } = (x +  \frac{1}{x})(x -  \frac{1}{x})

 = 4 \sqrt{20}

Similarly,

 {x}^{4} -  \frac{1}{ {x}^{4} } = ( {x}^{2} +  \frac{1}{ {x}^{2} })( {x}^{2} -  \frac{1}{ {x}^{2} })

 = 72 \sqrt{20}

please mark my answer as brainliest please please please

Similar questions