Math, asked by george76, 9 months ago

If [x - 1/x] = 4, find the values of (i) [x²+ 1/x²] (ii) [x⁴ + 1/x⁴].​

Answers

Answered by abhi569
20

Answer:

18 & 322

Step-by-step explanation:

Square on both sides:

→ (x - 1/x)² = 4²

→ (x)² + (1/x)² - 2(x)(1/x) = 16

→ x² + 1/x² - 2(x * 1/x) = 16

→ x² + 1/x² - 2(1) = 16 {x*1/x = 1}

x² + 1/x² = 16 + 2 = 18

Square on both sides again:

→ (x² + 1/x²)² = 18²

→ (x²)² + (1/x²)² + 2(x²)(1/x²) = 324

→ x⁴ + 1/x⁴ + 2(1) = 324 {(x²)²=x}

x⁴ + 1/x =324 - 2 = 322

Answered by sandy1816
10

x -  \frac{1}{x}  = 4 \\  \\ ( {x -  \frac{1}{x} })^{2}  = 16 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 = 16 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 18 \\  \\ ( { {x}^{2} +  \frac{1}{ {x}^{2} }  })^{2}  = 324 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }   + 2= 324 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 322

Similar questions