if x+1%x=4,find x^4+1%x^4
Answers
Answered by
0
Answer :
Given,
x + 1/x = 4
Now, squaring both sides, we get
(x + 1/x)^2 = 4^2
=> x^2 + 1/x^2 + (2 * x * 1/x) = 16
=> x^2 + 1/x^2 + 2 = 16
=> x^2 + 1/x^2 = 16 - 2
=> x^2 + 1/x^2 = 14
Again, squaring both sides, we get
(x^2 + 1/x^2)^2 = 14^2
=> x^4 + 1/x^4 + (2 * x^2 * 1/x^2) = 196
=> x^4 + 1/x^4 + 2 = 196
=> x^4 + 1/x^4 = 196 - 2
=> x^4 + 1/x^4 = 194
So, x^4 + 1/x^4 = 194
Another method.
Now,
x^4 + 1/x^4
= (x^2 + 1/x^2)^2 - (2 * x^2 * 1/x^2)
= (x^2 + 1/x^2)^2 - 2
= [ (x + 1/x)^2 - (2 * x * 1/x) ]^2 - 2
= (4^2 - 2)^2 - 2
= (16 - 2)^2 - 2
= 14^2 - 2
= 196 - 2
= 194
#MarkAsBrainliest
Given,
x + 1/x = 4
Now, squaring both sides, we get
(x + 1/x)^2 = 4^2
=> x^2 + 1/x^2 + (2 * x * 1/x) = 16
=> x^2 + 1/x^2 + 2 = 16
=> x^2 + 1/x^2 = 16 - 2
=> x^2 + 1/x^2 = 14
Again, squaring both sides, we get
(x^2 + 1/x^2)^2 = 14^2
=> x^4 + 1/x^4 + (2 * x^2 * 1/x^2) = 196
=> x^4 + 1/x^4 + 2 = 196
=> x^4 + 1/x^4 = 196 - 2
=> x^4 + 1/x^4 = 194
So, x^4 + 1/x^4 = 194
Another method.
Now,
x^4 + 1/x^4
= (x^2 + 1/x^2)^2 - (2 * x^2 * 1/x^2)
= (x^2 + 1/x^2)^2 - 2
= [ (x + 1/x)^2 - (2 * x * 1/x) ]^2 - 2
= (4^2 - 2)^2 - 2
= (16 - 2)^2 - 2
= 14^2 - 2
= 196 - 2
= 194
#MarkAsBrainliest
Similar questions