Math, asked by ashmitapaul09, 8 months ago

if x+1/x =4 find x square + 1 by x square and x cube +1 by x cube​

Answers

Answered by RvChaudharY50
298

Sᴏʟᴜᴛɪᴏɴ :-

→ (x + 1/x) = 4

squaring both sides,

→ (x + 1/x)² = 4²

using (a + b)² = a² + b² + 2ab in LHS,

→ x² + 1/x² + 2 * x * 1/x = 16

→ (x² + 1/x²) + 2 = 16

→ (x² + 1/x²) = 16 - 2

→ (x² + 1/x²) = 14 (Ans.)

_____________________

Now,

using , (a³ + b³) = (a + b)(a² + b² - ab) we get,

(x³ + 1/x³) = (x + 1/x)(x² + 1/x² - x*1/x)

→ (x³ + 1/x³) = (x + 1/x)(x² + 1/x² - 1)

Putting both values in RHS now,

→ (x³ + 1/x³) = 4 * (14 - 1)

→ (x³ + 1/x³) = 4 * 13

→ (x³ + 1/x³) = 52 (Ans.)

____________________________

Answered by Anonymous
145

{ \bold{ \red{ \underline{</strong><strong>GIVEN</strong><strong>-</strong><strong>}}}}

{ \dagger{ \tt{ \purple{  \: \:  \: x  + \frac{1}{x}  = 4}}}}

{ \bold{ \red{ \underline{</strong><strong>TO</strong><strong>\: </strong><strong>FIN</strong><strong>D</strong><strong>-</strong><strong>}}}}

{ \dagger{ \tt{ \purple{ \:  \:  \:  {x}^{2}  +  \frac{1}{ {x}^{2} }    \: \: and \:  \:  {x}^{3}  +  \frac{1}{ {x}^{3}}}}} }

__________________________________________________

{ \huge{ \rm{ \underline { \underline{ \blue{ </strong><strong>Solution-</strong><strong>}}}}}}

1⃣. x^2 + 1/x^2

• we know that....

{ \boxed { \boxed{ \sf{ \green{  \: {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \: }}}}}

using this algebraic identity for finding x^2 + 1/x^2

{ \rightarrow{ \pink{ \sf{ {(x +  \frac{1}{x} )}^{2} =  {x}^{2}   +  \frac{1}{ {x}^{2} }  + 2 . x .  \frac{1}{x}}}}}

putting the value of x + 1/x in the formula...

{ \implies{ \sf{ \pink{ {4}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2}}}}

{ \implies{ \sf{ \pink{16 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2}}}}

{ \implies{ \sf{ \pink { {x}^{2}  +  \frac{1}{ {x}^{2} }  = 16 - 2}}}}

{ \implies{ \underline{ \boxed{ \blue{ \sf{ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14}}}}}}

2⃣. x^3 + 1/x^3

using the algebraic identity given below for finding x^3 + 1/x^3

{ \boxed{ \boxed{ \green{ \sf{ {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  +  {b}^{2}  - ab)}}}}}

similarly,

{ \rightarrow{ \pink{ \sf{ {x}^{3}  +  \frac{1}{ {x}^{3} }  = (x +  \frac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} }  - x. \frac{1}{x})}}} }

• putting the values of x + 1/x and x^2 + 1/x^2. in the formula...

{ \implies{ \pink{ \sf{ {x}^{3}  +  \frac{1}{ {x}^{3} }  = (4)(14 - 1)}}}}

{ \implies{ \pink{ \sf{ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 4 \times 13}}}}

{ \implies{ \underline{ \boxed{ \blue{ \sf{ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 52}}}}}}

Similar questions