if x+1/x =4 find x square + 1 by x square and x cube +1 by x cube
Answers
Sᴏʟᴜᴛɪᴏɴ :-
→ (x + 1/x) = 4
squaring both sides,
→ (x + 1/x)² = 4²
using (a + b)² = a² + b² + 2ab in LHS,
→ x² + 1/x² + 2 * x * 1/x = 16
→ (x² + 1/x²) + 2 = 16
→ (x² + 1/x²) = 16 - 2
→ (x² + 1/x²) = 14 (Ans.)
_____________________
Now,
using , (a³ + b³) = (a + b)(a² + b² - ab) we get,
→ (x³ + 1/x³) = (x + 1/x)(x² + 1/x² - x*1/x)
→ (x³ + 1/x³) = (x + 1/x)(x² + 1/x² - 1)
Putting both values in RHS now,
→ (x³ + 1/x³) = 4 * (14 - 1)
→ (x³ + 1/x³) = 4 * 13
→ (x³ + 1/x³) = 52 (Ans.)
____________________________
__________________________________________________
1⃣. x^2 + 1/x^2
• we know that....
using this algebraic identity for finding x^2 + 1/x^2
• putting the value of x + 1/x in the formula...
2⃣. x^3 + 1/x^3
• using the algebraic identity given below for finding x^3 + 1/x^3
similarly,
• putting the values of x + 1/x and x^2 + 1/x^2. in the formula...