Math, asked by dk570890225, 6 months ago

if x+1/x=4 find (x²+1/x²) and (x³+1/x³)
answer is 14,52​

Answers

Answered by Eclairs
1

Answer:

l

Step-by-step explanation:

hope this will help....

Attachments:
Answered by Bidikha
3

Given -

x +  \frac{1}{x}  = 4

To find -

\bull \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = ?

\bull \:  {x}^{3}  +  \frac{1}{ {x}^{3} }  = ?

Solution -

(x +  \frac{1}{x} ) = 4

Squaring both sides,

 \implies{(x +  \frac{1}{x} )}^{2}  =  {4}^{2}

 \implies{x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 16

 \implies {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 16

\implies {x}^{2}  +  \frac{1}{ {x}^{2} }  = 16 - 2

\implies \: {x}^\red{2}  +  \frac{1}{ {x}^{2} }  = 14

Again,

\implies (x +  \frac{1}{x} ) = 4

Cubing both sides,

 \implies {(x +  \frac{1}{x}) }^{3}  =  {(4)}^{3}

 \implies {x}^{ 3}  +  \frac{1}{ {x}^{3} }  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 64

 \implies {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 4 = 64

 \implies {x}^{3}  +  \frac{1}{ {x}^{3} }  + 12 = 64

 \implies {x}^{3}  +  \frac{1}{ {x}^{3} }  = 64 - 12

\implies {x}^{3}  +  \frac{1}{ {x}^{3} } = 52

Formula used here -

  • (a+b)² = a²+b²+2ab
  • (a+b)³ = a³ +b³+3ab(a+b)
Similar questions