Math, asked by Anonymous, 5 months ago

if x-1/x=4 then evaluate x power 4 1/x power4​

Answers

Answered by Anonymous
2

Given:-

if x-1/x=4 then evaluate x power 4 1/x power4

Find:-

x power 4 1/x power4??

Solution:-

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x +  \frac{1}{x} = 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

 \Big(x +  \frac{1}{x} \Big) {}^{2} = 2 {}^{2}

x {}^{2} +  \frac{1}{x {}^{2} } + 2 = 4

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x {}^{2} +  \frac{1}{x {}^{2} }  = 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

 \Big(x -  \frac{1}{x} \Big) {}^{2} = x {}^{2} +  \frac{1}{x {}^{2} } - 2 = 2 - 2 = 0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x -  \frac{1}{x} = 0 \:  \:  \:  \:  \:  \:  \:  \:  \: (3)

(1) \times (3) =  >

 \Big(x +  \frac{1}{x} \Big) \Big(x -  \frac{1}{x} \Big) = 2 \times 0

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x {}^{2} -  \frac{1}{x {}^{2} } = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (4)

(2) \times (4) =  >

 \Big(x {}^{2} +  \frac{1}{x {}^{2} } \Big) \Big(x {}^{2} -  \frac{1}{x {}^{2} } \Big) = 2  \times  0

x {}^{4} -  \frac{1}{x {}^{4} } = 0


Feirxefett: well explained...
Similar questions