Math, asked by sahil511758, 1 year ago

If x+1/x=4,then find a3+ 1/a3​

Answers

Answered by Anonymous
1

Answer:

x {}^{3}  +  \frac{1}{x {}^{3} }  = 52

Step-by-step explanation:

\boxed{given}

x +  \frac{1}{x}  = 4

\boxed{Tofind}

x {}^{3}  +  \frac{1}{x {}^{3} }

\boxed{answer}

given

x {}^{}  +  \frac{1}{x {}^{} }  = 4

cubing both sides

we get

(x +  \frac{1}{x} ) {}^{3}  = (4) {}^{3}

using identity

\green{(a+b)^3=a^3+b^3+3xy(x+y)}

x {}^{3}  +  \frac{1}{x {}^{3} }  + 3(x)( \frac{1}{x} )(x +  \frac{1}{x} ) = 64

x +  \frac{1}{x}  = 4...given

so we get

x {}^{3}  +  \frac{1}{x {}^{3} }  + 3(4) = 64

x {}^{3}  +  \frac{1}{x {}^{3} }  + 12 = 64

x {}^{3}  +  \frac{1}{x {}^{3} }  = 64 - 12

x {}^{3}  +   \frac{1}{x {}^{3} }  = 64 - 12

x {}^{3}  +  \frac{1}{x {}^{3} }  = 52

Similar questions