If x +1 / x= 4, then Find The Value Of --> x4 +1 / x4
Answers
Answered by
5
EXPLANATION.
⇒ (x + 1/x) = 4.
As we know that,
We can write equation as,
Squaring on both sides of the equation, we get.
⇒ (x + 1/x)² = (4)².
⇒ x² + 1/x² + 2(x)(1/x) = 16.
⇒ x² + 1/x² + 2 = 16.
⇒ x² + 1/x² = 16 - 2.
⇒ x² + 1/x² = 14.
Again, Squaring on both sides of the equation, we get.
⇒ (x² + 1/x²)² = (14)².
⇒ x⁴ + 1/x⁴ + 2(x²)(1/x²) = 196.
⇒ x⁴ + 1/x⁴ + 2 = 196.
⇒ x⁴ + 1/x⁴ = 196 - 2.
⇒ x⁴ + 1/x⁴ = 194.
Answered by
59
Answer:
Step-by-step explanation:
x^4+1/x^4
(x^2+1/x^2) = (x^4+1/x^4) + 2
(x^4+1/x^4) = (x^2 + 1/x^2) -2
(x^4+1/x^4) = (14)^2 - 2
(x^4+1/x^4) = 196 - 2
(x^4+1/x^4) = 194
Similar questions
English,
2 days ago
English,
2 days ago
Computer Science,
2 days ago
English,
4 days ago
Chemistry,
8 months ago