Math, asked by Poojasamota, 1 year ago

If x+1/x = 4 then find x^4+1/x^4


ks180skpans08: x^4+1/x^4=81

Answers

Answered by ADARSH06
0
x+1/x=4
x+1=4x
4x=x+1
4x-x=1
3x=1
x=1/3
we have to find x^4+1/x^4
Let put the value of x
 (\frac{1}{3} )^{4}  +  (\frac{1}{ \frac{1}{3} } )^{4}
 \frac{1}{81}  + 81
  \frac{1 + 81 \times 81}{81}
 \frac{1 + 6561}{81}
 \frac{6562}{81}

Poojasamota: 2nd step hi wrong h check it again
Poojasamota: x^2+1 = 4x aaega
Answered by Anonymous
2

Answer:

\underline{\bigstar\:\textsf{According to the Question Now :}}\\\\\implies\tt x + \dfrac{1}{x} = 4 \\\\ \textsf{Squaring Both Sides :} \\\\\implies\tt\bigg(x + \dfrac{1}{x} \bigg)^{2} ={(4)}^{2}\\\\\implies\tt {x}^{2} +\dfrac{1}{{x}^{2}} + 2 \times x \times \dfrac{1}{x} = 16 \\\\\\\implies\tt {x}^{2} +\dfrac{1}{{x}^{2}} = 16 - 2 \\\\\\\implies\tt {x}^{2} +\dfrac{1}{{x}^{2}} =14\\\\ \textsf{Squaring Both Sides :} \\\\\implies\tt \bigg({x}^{2} +\dfrac{1}{{x}^{2}}\bigg) ={(14)}^{2}\\\\\\\implies\tt {x}^{4} +\dfrac{1}{{x}^{4}} + 2 \times{x}^{2} \times\dfrac{1}{{x}^{2}} = 196\\\\\\\implies\tt {x}^{4} +\dfrac{1}{{x}^{4}} = 196 - 2\\\\\\\implies\large\boxed{\tt{x}^{4} +\dfrac{1}{{x}^{4}} = 194}

Similar questions