Math, asked by kunjanvyas529, 4 days ago

if x+1/x=4 then find x²+1/x²​

Answers

Answered by gurmandeep0714
1

Answer:

x+1/x=4

x+1=4x

4x-x=1

3x=1

x=1/3

x2+1/x2

(1/3) ^2+1/(1/3) ^2

(1/9)+1/(1/9)

((1+9) /9)/(1/9)

(10) /9*9/1

10

Answered by divyapakhare468
0

To find : value of \frac{x^{2} + 1}{x^{2} }

Given : \frac{x+ 1}{x} = 4

Solution :

  • As per given data we know that \frac{x+ 1}{x} = 4  , we have to find value of \frac{x^{2} + 1}{x^{2} }  
  • Using transposition method we find value of x from \frac{x+ 1}{x} = 4  .
  • Therefore , solving for x .
  • \frac{x+ 1}{x} = 4  

      x + 1 = 4x  \\4x - x = 1 \\3x = 1 \\x = \frac{1}{3}

  • Now , substituting the value of x in the equation \frac{x^{2} + 1}{x^{2} }   .
  • \frac{x^{2} + 1}{x^{2} }  

       = \frac{(\frac{1}{3} )^{2} +1}{(\frac{1}{3} )^{2} }  \\\\= \frac{\frac{1}{9}+ 1  }{\frac{1}{9} }  \\\\= \frac{\frac{1 + 9}{9} }{\frac{1}{9} }  \\\\= \frac{\frac{10}{9} }{\frac{1}{9} }  \\\\= \frac{10}{9} \times\frac{9}{1}  \\\\ =10

Hence , value of \frac{x^{2} + 1}{x^{2} }   is 10 .

Similar questions