if x+1/x=4 then findx^5/1/x^5
Answers
Answered by
4
Answer :
x^5 + 1/x^5 = 724
Solution :
- Given : x + 1/x = 4
- To find : x^5 + 1/x^5 = ?
We have ,
x + 1/x = 4 ------(1)
Now ,
Squaring both the sides of eq-(1) , we get ;
=> (x + 1/x)² = 4²
=> x² + (1/x²) + 2•x•(1/x) = 16
=> x² + 1/x² + 2 = 16
=> x² + 1/x² = 16 - 2
=> x² + 1/x² = 14 ------(2)
Now ,
Cubing both the sides of eq-(1) , we get ;
=> (x + 1/x)³ = 4³
=> x³ + (1/x)³ + 3•x•(1/x)•(x + 1/x) = 64
=> x³ + 1/x³ + 3•1•4 = 64
=> x³ + 1/x³ + 12 = 64
=> x³ + 1/x³ = 64 - 12
=> x³ + 1/x³ = 52 -------(3)
Now ,
Multiplying eq-(2) and (3) , we get ;
=> (x² + 1/x²)(x³ + 1/x³) = 14•52
=> x²•x³ + x²/x³ + x³/x² + 1/(x²•x³) = 728
=> x^5 + 1/x + x + 1/x^5 = 728
=> (x^5 + 1/x^5) + (x + 1/x) = 728
=> x^5 + 1/x^5 + 4 = 728
=> x^5 + 1/x^5 = 728 - 4
=> x^5 + 1/x^5 = 724
Hence ,
x^5 + 1/x^5 = 724
Similar questions