if[x+1/x]=4, then the value of [x2 + 1/x2]is
Answers
Answered by
0
Answer:
=4
Step-by-step explanation:
x+x1=4
Squaring (1) in both sides, we get
(x+\dfrac{1}{x})^{2}=4^{2}(x+x1)2=42
⇒ x^2+\dfrac{1}{x^2}+2.x.\dfrac{1}{x} =16x2+x21+2.x.x1=16
⇒ x^2+\dfrac{1}{x^2}+2 =16x2+x21+2=16
⇒x^2+\dfrac{1}{x^2}=16-2=14x2+x21=16−2=14
∴ x^2+\dfrac{1}{x^2}=14x2+x21=14
Hence, x^2+\dfrac{1}{x^2}=14x2+x21=14
Similar questions