if x-1/x=4then evaluate x^2-1x^2 and x^4-1/x^4
Answers
Solution :-
x - 1/x = 4 ---eq(1)
Squaring on both sides
⇒ (x - 1/x)² = 4²
⇒ (x)² + (1/x)² - 2(x)(1/x) = 16
[ Because (a - b)² = a² + b² - 2ab ]
⇒ x² + 1/x² - 2 = 16
⇒ x² + 1/x² = 16 + 2
⇒ x² + 1/x² = 18 --- eq(2)
Adding 2(x)(1/x) on both sides
⇒ x² + (1/x)² + 2(x)(1/x) = 18 + 2(x)(1/x)
⇒ (x + 1/x)² = 18 + 2
[ Because (a + b)² = a² + b² + 2ab ]
⇒ (x + 1/x)² = 20
⇒ x + 1/x = √20 = √4 * √5 = 2√5
⇒ x + 1/x = 2√5 ---eq(3)
Multiplying eq(1) & eq(3)
⇒ (x - 1/x)(x + 1/x) = 4 * 2√5
⇒ (x)² - (1/x)² = 8√5
[ Because (a - b)(a + b) = a² - b² ]
⇒ x² - 1/x² = 8√5 ---eq(4)
Multiplying eq(2) and eq(4)
⇒ (x² + 1/x²)(x² - 1/x²) = 18 * 8√5
⇒ ( x² )² - ( 1/x² )² = 144√5
[ Because (a + b)(a - b) = a² - b²]
⇒ x^4 - 1/x^4 = 144√5
Hence, the value of x² - 1/x² is 8√5 and the value of x^4 - 1/x^4 is 144√5.
- (x - 1/x ) = 4
- (x² - 1/x²)
- (x⁴ - 1/x⁴)
Let ,
(x - 1/x) = 4 ---------------Equation (1)
Squaring both sides of Equation (1) we get,
→ (x - 1/x)² = 16
[ using (a-b)² = a² + b² - 2ab in LHS ]
→ (x² + 1/x² - 2x*1/x) = 16
→ (x²+1/x²) = 16+2
→ (x² + 1/x²) = 18 ------------------Equation(2)
Now, adding 2 both sides of Equation we get,
→ (x² + 1/x² + 2) = 18+2
[ using (a+b)² = a² + b² + 2ab in LHS ]
→ (x+1/x)² = 20
[ square root both sides ]
→ (x + 1/x) = √20 = 2√5 ------------Equation(3)
Mulitply Equation(1) and Equation(3) ,
and using [(a+b)(a-b) = a²-b²] we get,,
→ (x+1/x)(x-1/x) = 4×2√5
_______________________________
Now, multiply Value of (x² - 1/x²) and Equation(2)
and, again using [(a+b)(a-b) = a²-b²] we get,,
→ (x² - 1/x²)(x² + 1/x²) = 8√5 * 18