if x+1/x=5/2 find the value of (i) x-1/x (ii) x^3 + 1/x^3
Answers
Answer:
Given, x−x1=5
Given, x−x1=5Squaring both the sides,
Given, x−x1=5Squaring both the sides,⇒(x−x1)2=52
Given, x−x1=5Squaring both the sides,⇒(x−x1)2=52⇒x2+x21−2(x)(x1)=25
Given, x−x1=5Squaring both the sides,⇒(x−x1)2=52⇒x2+x21−2(x)(x1)=25⇒x2+x21=25+2
Given, x−x1=5Squaring both the sides,⇒(x−x1)2=52⇒x2+x21−2(x)(x1)=25⇒x2+x21=25+2⇒x2+x21=27
Given, x−x1=5Squaring both the sides,⇒(x−x1)2=52⇒x2+x21−2(x)(x1)=25⇒x2+x21=25+2⇒x2+x21=27Now,
Given, x−x1=5Squaring both the sides,⇒(x−x1)2=52⇒x2+x21−2(x)(x1)=25⇒x2+x21=25+2⇒x2+x21=27Now,x3−x31
Given, x−x1=5Squaring both the sides,⇒(x−x1)2=52⇒x2+x21−2(x)(x1)=25⇒x2+x21=25+2⇒x2+x21=27Now,x3−x31=(x−x1)[(x)2+(x1)2+(x)(x1)]
Given, x−x1=5Squaring both the sides,⇒(x−x1)2=52⇒x2+x21−2(x)(x1)=25⇒x2+x21=25+2⇒x2+x21=27Now,x3−x31=(x−x1)[(x)2+(x1)2+(x)(x1)]=5(27+1)
Given, x−x1=5Squaring both the sides,⇒(x−x1)2=52⇒x2+x21−2(x)(x1)=25⇒x2+x21=25+2⇒x2+x21=27Now,x3−x31=(x−x1)[(x)2+(x1)2+(x)(x1)]=5(27+1)=140