Math, asked by gugansns9, 16 days ago

if x+1/x=5,determine x^3+1/x^3.​

Answers

Answered by ItzCarbohydrates
2

As we know,

⇒ (x + 1/x)2 = x2 + 1/x2 + 2

Given, x + 1/x = 5

⇒ (x + 1/x)3 = x3 + 1/x3 + 3 (x + 1/x)

⇒ 53 = x3 + 1/x3 + 3 × 5

⇒ x3 + 1/x3 = 125 – 15 = 110

Answered by Mysteryboy01
0

x +  \frac{1}{x}  = 5

 {x}^{3}  +  \frac{1}{ {x}^{3} }  = \:  ?

( {a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b)

(x +  \frac{1}{x} ) ^{3}  =  {5}^{3}

 {x}^{3} +  \frac{1}{ {x}^{3} } + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) = 125

  {x}^{3}  + \frac{1}{ {x}^{3} }  + 15 = 125

  {x}^{3}  + \frac{1}{ {x}^{3} }  = 125 - 15

  {x}^{3}  + \frac{1}{ {x}^{3} }  = 110

Similar questions