Math, asked by kindle25, 8 months ago

. if x + 1/x =√5 ,Find the value of :
1. x^2 +1/x^2

if x^2 + 1/x^2 =83, find the value of x -1/x

Answers

Answered by mysticd
9

 Given \: x + \frac{1}{x} = \sqrt{5} \: --(1)

\* On squaring both sides of the equation, we get *\

 \Big( x + \frac{1}{x}\Big)^{2} =( \sqrt{5})^{2}

 \implies x^{2} + \frac{1}{x^{2}} + 2 \times x \times \frac{1}{x} = 5

 \implies x^{2} + \frac{1}{x^{2}} + 2  = 5

 \implies x^{2} + \frac{1}{x^{2}}   = 5 - 2

\green { \implies x^{2} + \frac{1}{x^{2}}   = 3 }

•••♪

Answered by BrainlyKingdom
3

Answer :

\sf{x^2+\dfrac{1}{x^2}=3}

Step-by-step explanation :

\sf{x+\dfrac{1}{x}=\sqrt{5}}

  • Squaring on Both Sides

\to\sf{\left(x+\dfrac{1}{x}\right)^2=(\sqrt{5})^2}

  • Apply Algebraic Identify : \sf{(a+b)^2=a^2+b^2+2ab}

\to\sf{x^2+\dfrac{1^2}{x^2}+2\times x\times \dfrac{1}{x}=(\sqrt{5})^2}

  • We know \sf{(\sqrt{a})^2=a}

\to\sf{x^2+\dfrac{1}{x^2}+2=5}

  • Subtracting 2 from both Sides

\to\sf{x^2+\dfrac{1}{x^2}+2-2=5-2}

\boxed{\to\sf{x^2+\dfrac{1}{x^2}=3}}

Similar questions